Class: XI
Time Allowed: $\mathbf{2 5}$ minutes
Q1:
SECTION "A"
Note: Attempt all questions from this section. Each question carries one mark.
i) If $Z=(0,2)$ then $|Z|=$? where ' Z ' is a complex number
(a) 2
(b) -2
(c) 4
(d) $\sqrt{2}$
ii) Two matrices are conformable for addition \& subtraction if their order is:
(a) Same
(b) Opposite
(c) Different
(d) None
iii) Each diagonal element of main diagonal of a skew Hermitian matrix must be
(a) 1
(b) 0
(c) Any non-zero number
(d) Any complex number
iv) If $|\vec{a} X \vec{b}|=\vec{a} \cdot \vec{b}$, then angle between \vec{a} and \vec{b} :
(a) 0
(b) $\frac{\pi}{2}$
(c) $\frac{\pi}{4}$
(d) π
v) If $d=-3$ and last term of A.P is 48 , then $3^{\text {rd }}$ last term is:
(a) 54
(b) 45
(c) 42
(d) 51
vi) Sum of terms of the series $1+2+3+\ldots+15$ is:
(a) 100
(b) 110
(c) 120
(d) 130
vii) If $a_{n-2}=3 n-11$, then a_{n}
(a) $3 \mathrm{n}+5$
(b) $3 n-5$
(c) $3 n-9$
(d) $3 n-13$
viii) If ${ }^{10} C_{r}={ }^{10} C_{r+4}$, then ${ }^{5} P_{r}$ is:
(a) 120
(b) 60
(c) 20
(d) 80
ix) If A is any event in the sample space S then correct relation is:
(a) $-1 \leq P(A) \leq 1$
(b) $0 \leq P(A)<1$
(c) $0 \leq P(A) \leq 1$
(d) None
x) The expansion of $(1-2 x)^{-2}$ is valid if :
(a) $|x|<0$
(b)
$|x|<\frac{1}{2}$
(c) $|x|<2$
(d) $|x|<1$
xi) how many number of terms are in the expension $(a+b)^{n}$
(a) $\mathrm{n}-1$
(b) n
(c) $n+1$
(d) $\mathrm{n}-2$
xii) The domain of the function $g(x)=\frac{x+3}{x-5}$ is
(a) \mathbb{R}
(b) $\mathrm{R}-\{3\}$
(c) $\mathrm{R}-\{5\}$
(d) $\mathrm{R}-\{-5\}$
xiii) If $f(x)=x+3$ then $f^{-1}(2)$ is:
(a) 0
(b) 1
(c) -1
(d) 2
xiv) The feasible solution, which maximizes or minimizes the objective function is called the:
(a) Optimal solution
(b) Corner solution
(c) initial solution
(d) complex solution
xv) Solution space of linear inequality $2 x+3 y \leq 6, \forall x, y \in \mathbb{R}$ includes all points
(a) Above the line
(b) below the line
(c) on and above the line
(d) on and below the line
$\mathrm{xvi})$ If α, β and γ are the angles of triangle ABC , then $\sin (270-\gamma)$ Is equal to :
(a) $\sin \gamma$
(b) $-\sin \gamma$
(c) $\cos \gamma$
(d) $)-\cos \gamma$
xvii) The point of intersection of the right bisectors of the sides of a triangle is called:
(a) Circum-centre
(b) In-centre
(c)Escribed centre
(d) orthocentre
xviii) In any triangle ABC , with usual notations, $\mathrm{abc}=$
(a) R
(b) RS
(c) $4 \mathrm{R} \Delta$
(d) $\frac{\Delta}{s}$
xix) If $\tan 2 x=-1$, then solution in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ is:
(a) $-\frac{\pi}{8}$
(b) $-\frac{\pi}{4}$
(c) $\frac{3 \pi}{8}$
(d) $\frac{3 \pi}{4}$
$\mathrm{xx}) \operatorname{Sin}\left[\operatorname{Sin}^{-1}\left(\frac{1}{2}\right)\right]=$?
(a) 1
(b) $\frac{\sqrt{3}}{2}$
(c) $\frac{1}{2}$
(d) $\frac{2}{\sqrt{3}}$

END OF SECTION A

Class: XI

HIGHER SECONDARY SCHOOL CERTIFICATE EXAMINATION 2024

Time: 2 hours 40 minutes

SUBJECT: MATHEMATICS SECTION "B" AND SECTION "C"
 SECTION "B" SHORT ANSWER QUESTIONS

Note: Attempt any ten questions from this section. Each questions carry four marks.
Q2. i) Solve the complex equation: $(x+3 i)^{2}=2 y i$
OR
Separate real and imaginary parts: $\frac{1+i}{1-i} \cdot \frac{2-i}{1-i}$
ii) Show that matrix $\left[\begin{array}{ccc}1 & -2 & -6 \\ -3 & 2 & 9 \\ 2 & 0 & -3\end{array}\right]$ is periodic matrix of period 2 .

OR
Using definition of involutory matrix show, that matrix $\left[\begin{array}{ccc}0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4\end{array}\right]$ is involutory.
iii) Using properties of determinant prove that:

$$
\left|\begin{array}{lll}
\alpha & \beta \gamma & \alpha \beta \gamma \\
\beta & \gamma \alpha & \alpha \beta \gamma \\
\gamma & \alpha \beta & \alpha \beta \gamma
\end{array}\right|=\left|\begin{array}{lll}
\alpha & \alpha^{2} & \alpha^{3} \\
\beta & \beta^{2} & \beta^{3} \\
\gamma & \gamma^{2} & \gamma^{3}
\end{array}\right|
$$

iv) Find the work done by a force $\vec{F}=7 \hat{i}+9 \hat{j}-11 \hat{k}$ in moving an object along a straight line from $(4,2,7)$ to $(6,4,9)$.
v) Find n so that $\frac{a^{n-5}+b^{n-5}}{a^{n-6}+b^{n-6}}$ may become G.M between $\mathrm{a} \& \mathrm{~b}$

OR
Convert the recurring decimal 1.148 into an equivalent fraction.
vi) Find the sum of the series $3+6+15+42+123+\cdots \cdots$ to n terms

OR

$$
2^{2}+4^{2}+6^{2}+8^{2}+\cdots \text { up to n terms }
$$

vii) Find the value of $n \& r$, when

$$
n-1_{C_{r-1}}: n_{C_{r}}: n+1_{C_{r+1}}=3: 6: 11
$$

OR
There are 11 men and 9 women members of a club. How many committees of 8 members can be formed, having:
(i) Exactly five men
(ii) at most five women
(iii) at least five women
viii) The path of two aero planes A and B in the plane are determined by the straight lines $2 x-y=6$ and $3 x+y=4$ respectively . Graphically find the point where the two paths cross each other.
ix) Prove by Mathematical Induction

$$
\begin{aligned}
& 2+6+12+\cdots+n(n+1)=\frac{1}{3} n(n+1)(n+2) \\
& \text { OR } \\
& \text { Show_that } 3^{2 n+2}-8 n-9 \text { is divisible by } 64, \forall n \in N .
\end{aligned}
$$

x) Solve the following linear programming problems by graphical method when $x \geq 0, y \geq 0$

Maximize objective function $Z(x, y)=10 x+11 y$
Subject to the constraints $2 x+3 y \leq 8 ; 6 x+3 y \leq 10$

OR

Find the feasible region graphically subject to the following constraints and find its corner points

$$
4 x+y \geq 9 ; 2 x+3 y \leq 14 \quad ; \quad x-y \leq 5 ; x \geq 0, y \geq 0
$$

xi) Prove any two of the following:
(a) $\cos (\alpha+\beta) \cos (\alpha-\beta)=\cos ^{2} \alpha-\sin ^{2} \beta$
(b) $\cos 4 \theta=8 \cos ^{4} \theta-8 \cos ^{2} \theta+1$
(c) $\tan \frac{\alpha}{2}=\operatorname{cosec} \alpha-\cot \alpha$
(d) $\frac{\sqrt{3} \cos 3^{\circ}-\sin 3^{\circ}}{\cos 3^{\circ}+\sqrt{3} \sin 3^{\circ}}=\tan 57^{\circ}$
xii) For an equilateral triangle ABC prove that $r: R: r_{1}=1: 2: 3$, where notations have their usual meanings.
xiii) Solve the equation $\sin x-\frac{2 x}{\pi}=0$ graphically for the interval $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$

OR
Draw the graph of $y=\cos 2 x, 0 \leq x \leq 2 \pi$
xiv) Show that:

$$
\operatorname{Cot}^{-1} \frac{4}{\sqrt{65}}=\operatorname{Cos}^{-1} \frac{4}{9} \quad \text { OR } \quad 2 \operatorname{Tan}^{-1} \frac{1}{3}+\operatorname{Tan}^{-1} \frac{1}{7}=\frac{\pi}{4}
$$

SECTION "C" DETAILED ANSWER QUESTIONS

40 Marks
Note: Attempt any five questions from this section. Each question carries eight marks.
Q3. Solve the non-homogeneous system of linear equations using Gauss -Jordan method.

$$
\begin{aligned}
2 x+2 y-z= & 4 \\
x-2 y+z= & 2 \\
x+y= & 0
\end{aligned}
$$

Q4 Using vector algebra, find the volume of the tetrahedron having vertices $\mathrm{A}(2,1,8), \mathrm{B}(3,2,9), \mathrm{C}(2,1,4)$ and $\mathrm{D}(3,3,10)$. Q5. A pair of fair dice is thrown. If the two numbers appearing are different, find probability, that
(i) The sum is 10 ,
(ii) The sum is six or less.

OR

A bag contains 15 black, 25 red and 10 white balls. A ball is drawn at random. Find the probability that is it either red or white.
Q6. If $\frac{1}{x}=\frac{2}{5}+\frac{1.3}{2!}\left(\frac{2}{5}\right)^{2}+\frac{1.3 .5}{3!}\left(\frac{2}{5}\right)^{3}+\cdots \cdots \cdots$, then using binomial theorem show that $4 x^{2}-2 x-1=0$
Q7. Find the point of intersection of the following functions graphically:

$$
f(x)=x=2 \text { and } g(x)=x^{2}-4 x+6
$$

OR

Find the equation of the function of the type $\mathrm{y}=f(x)=a x^{2}+b x+c$ which cuts the x -axis at the points $(-4,0)$ and $(3,0)$ and passes through the points $(2,-4)$
Q8. Derive the Cosine Law, $a^{2}=b^{2}+c^{2}-2 b c \cos \alpha$ for a triangle ABC.
Q9. Find general solution of $\quad 3 \tan ^{2} x+2 \sqrt{3} \tan x+1=0 \quad$ OR $\quad 4 \cos ^{2} x-8 \sin x+1=0$

